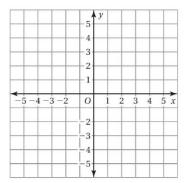
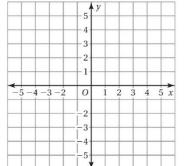
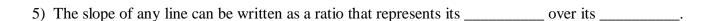

Chapters 4 & 6 Review


Graph both linear equations on the coordinate plane on the right. Make sure you use an input/output table with at least 3 ordered pairs for each.

1)
$$y = 3x - 4$$


$$y = \frac{1}{2}x - 3$$



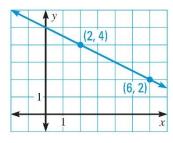
Graph both of the equations on the coordinate plane on the right. You may make an input/output table if you wish.

3)
$$y = -3$$

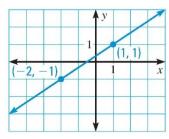


4)
$$x = 1$$

Tell whether the slope of the line is positive, negative, zero, or undefined. Then find the slope if it exists.


6)

Kind of slope: _____


m =

7)

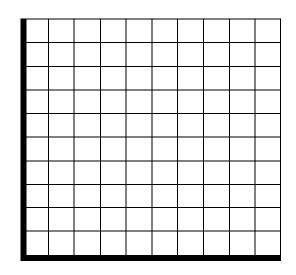
Kind of slope: _____

8)

Kind of slope:

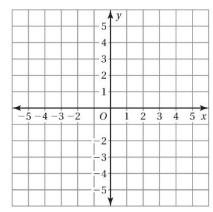
- 9) The slopes of parallel lines are the _____.
- 10) Find the slope of the line that passes through the points. Write your answer in simplest form.

a)
$$(-1, 11)$$
 and $(2, 10)$ $m = _____$

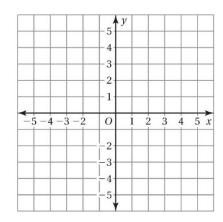

b)
$$(-2, 0)$$
 and $(4, 9)$ $m = _____$

$$m =$$

c)
$$(-5, 2)$$
 and $(-5, 7)$ $m = _____$

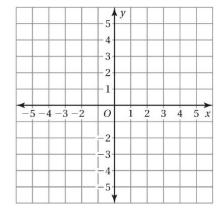

d)
$$(4, 6)$$
 and $(-2, 6)$ $m = _____$

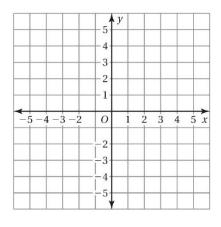
- 11) Jenny wanted to buy a bunch of hot cocoas for her friends. The number y cocoas you get from x dollars is represented by the equation y = 3x.
 - a) Make sure to:
 - Label you axis.
 - Use at least 4 ordered pairs.
 - b) Interpret what the slope means in this problem



Graph each equation using the slope and the *y*-intercept only.

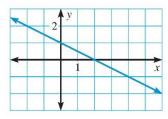
16)
$$y = -\frac{3}{2}x + 4$$

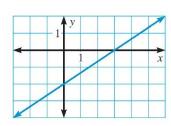

17)
$$y = -4x + 5$$



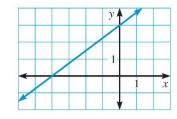
Solve each equation in slope-intercept form. Then graph.

18)
$$2x + y = 3$$


19)
$$6x - 3y = -9$$



Identify the *x*-intercept and the *y*-intercept of the graph.


20)

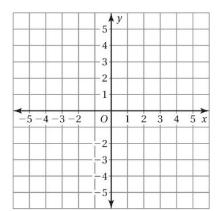
21)

22)

x-intercept : _____

y-intercept : _____

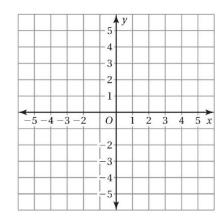
x-intercept : _____


y-intercept : _____

x-intercept : _____

y-intercept : _____

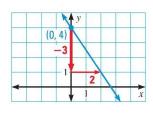
Find the *x*-intercept and the *y*-intercept of each equation, and then graph it.


23)
$$-4x + 5y = 20$$

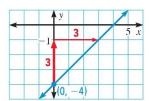
x-intercept : _____

y-intercept : _____

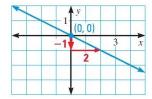
24)
$$6x - 3y = 12$$



x-intercept : _____


y-intercept : _____

Write an equation of the line shown in slope-intercept form.


25)

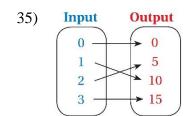
26)

27)

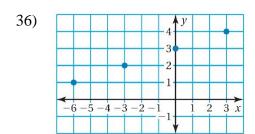
Write an equation of the line shown in slope-intercept form that passes through the points.

28)
$$(-4, -1), (0, 5)$$

29)
$$(0, -3), (1, -5)$$


Write in point-slope form an equation of the line that passes through the given point and has the given slope.

30)
$$(2, 2)$$
; $m = -1$


31)
$$(-3, 5); m = -\frac{5}{7}$$

Write in slope-intercept form an equation of the line that passes through the given points. (Clue: Is the *y*-intercept given?)

Determine whether the relation is a function. **Explain**.

Use the graph or table to write a linear function (equation) that relates y to x.

37)	х	0	5	10	15
	У	50	40	30	20